Software Engineering Challenges in the Smart Grid

3rd International Workshop on Software Engineering Challenges for the Smart Grid

Jereme Haack
Overview

- Challenge Overview
 - Security
 - Simulation
 - Devices
 - Testing
 - Human Factors
- Solution
- VOLTTRON Example
- Conclusion
Challenges

 ► Application Challenges
 ■ Integrating Variable Distributed Generation
 ● Wind
 ● Solar
 ■ Integrating Storage at multiple layers
 ■ Integrating Electric Vehicles
 ■ Managing End-Use Loads
 ● Residential
 ● Commercial
 ● Industrial
 ■ Enabling energy coordination and trading between buildings

 ► Technology Challenges
 ■ Rapid Deployment Of Networked (Grid, Buildings, …) Sensors And Controllers
 ■ Scalable control and diagnostics
 ■ Security
Challenges

- Large amount of data generated by sensors goes unutilized due to high volume. Off-line analysis helps but is insufficient.
- Appliances/devices unable to coordinate energy usage due to proprietary solutions and lack of underlying distributed control algorithms and platforms.
- Growing ownership of Electric Vehicles will increase effect of load peaks
 - Increase in energy market purchases
 - Increase in maintenance due to equipment stress (e.g. transformers)
- Require techniques to better integrate renewables at all scales: Rooftop PV to Wind Farms, to Energy Storage
- Agent Based approach is a natural fit for this area, but
 - Agent based energy efficiency solutions often do not progress beyond simulation
Security Failure

- Researchers hacked Google building in Australia
- Control systems accessible over internet
 - Unpatched
 - Hardcoded passwords
- Target data breach caused by stolen credentials from third party controls vendor
Simulation vs. Reality

- VOLTTRON hardware demo
 - Algorithm worked perfectly in simulation
 - Initially failed when applied to real systems

- Potential stumbling blocks
 - Perfect knowledge
 - Time steps
 - Lack of diversity
 - Hidden factors
Interacting with Devices

- **Proprietary Protocols**
 - Vendors don’t necessarily have incentive to be open

- **Lack of standards or too many standards**
 - Communicating with multiple devices could require speaking multiple protocols

- **Device-specific characteristics**
 - Time-scale
 - Responsiveness
 - Available information
 - Critical priority
Testing and Verification

- Back to simulation vs. reality problem
 - Testing applications without access to appliances
 - Testing at scale
 - Test coverage, edge cases
- Who watches the watcher
 - Software and hardware responsibilities for safe operation
Human Factor

- Utility Operators
 - Conservative
 - Risk Averse (for good reason)

- Vendors
 - Does it help them sell appliances?

- Consumers
 - Lower bill
 - No decrease in quality of service

- Other developers
 - Ease of use
 - Power
Technology Solution Attributes

- **Open, flexible and modular software platform**
 - Ease of application development
 - Interoperable across vendors and applications
 - Hides power and control system complexities from developers
 - Object oriented, modern software development environment
 - Language agnostic. Does not tie the applications to a specific language such as Java

- **Broad device and control systems protocols support built-in**
 - ModBUS, BACNet, and others
 - Multiple types of controllers and sensors
 - Low CPU, memory and storage footprint requirements
 - Supports non-Intel CPUs

- **Secure**
 - Security libraries and cryptography built-in
 - Manage applications to prevent resource exhaustion (CPU, memory, storage)
 - Robust against denial-of-service (e.g. does not crash when scanned via NMAP)
 - Supports modern application development environments
Managing Load on Distribution Transformer

- One distribution transformer serving residential neighborhood
- Multiple electric vehicles per household
- 107 degree day
- Goal: Keep the transformer temperatures below a desired threshold to extend lifetime and reduce risk of fault
- Use VOLTTRON to coordinate EV charging and other load behavior across residences to:
 - Keep aggregate power used by multiple residences below a limit related to transformer temperatures
 - Give priority to vehicles that need to leave soon (e.g. pick up kids from soccer)
 - Temporarily absorb start-up demand from A/C compressors and motors.
Approach: VOLTTRON™ Platform

- VOLTTRON is a software platform for next generation distributed control applications for integrating buildings and power grid
 - Proven through simulation, prototypes and field deployments
 - Flexible, Modular and Language-agnostic
 - Open-source, easy to extend, already being used by external collaborators
 - Maintain security and manage platform resources
 - Services for applications to find each other

VOLTTRON Platform

- Secure Multi-agent Execution Platform
- Resource Monitoring and Control
- Capability Discovery
- Agent Execution Environment
- Python
- Java
- Other

Secure Distributed Communications
VOLTTRON Success Stories

- Ideal platform for Department of Energy to use for transactive energy research and demonstrations
- Enables decentralized, distributed or hierarchical control applications with fast, and easy code development
- Demonstrated with real hardware
 - Hardware testbed
 - EV Charging coordination at PNNL SmartHomes
 - Transactional Network Program
- Downloaded and used by:
 - Virginia Tech
 - LBNL
 - ORNL
- Funded by PNNL’s Future Power Grid Initiative
Conclusion

► Business as usual is not an option
► We have solutions, but they must transition to real world applications
► Great opportunities but great challenges and responsibility
VOLTTRON Info

- Open Source
- Active development
- https://github.com/VOLTTRON/volttron/wiki
- volttron@pnnl.gov