Software Engineering Challenges in the Smart Grid

3rd International Workshop on Software Engineering Challenges for the Smart Grid

Jereme Haack

Overview

Challenge Overview

- Security
- Simulation
- Devices
- Testing
- Human Factors
- Solution
- VOLTTRON Example
- Conclusion

Challenges

- Application Challenges
 - Integrating Variable Distributed Generation
 - Wind
 - Solar
 - Integrating Storage at multiple layers
 - Integrating Electric Vehicles
 - Managing End-Use Loads
 - Residential
 - Commercial
 - Industrial
 - Enabling energy coordination and trading between buildings
- Technology Challenges
 - Rapid Deployment Of Networked (Grid, Buildings, ...) Sensors And Controllers
 - Scalable control and diagnostics
 - Security

Pacific Northwes

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Challenges

- Large amount of data generated by sensors goes unutilized due to high volume. Off-line analysis helps but is insufficient.
- Appliances/devices unable to coordinate energy usage due to proprietary solutions and lack of underlying distributed control algorithms and platforms.
- Growing ownership of Electric Vehicles will increase effect of load peaks
 - Increase in energy market purchases
 - Increase in maintenance due to equipment stress (e.g. transformers)
- Require techniques to better integrate renewables at all scales: Rooftop PV to Wind Farms, to Energy Storage
- Agent Based approach is a natural fit for this area, but
 - Agent based energy efficiency solutions often do not progress beyond simulation

Pacific Northwest

Security Failure

- Researchers hacked Google building in Australia
- Control systems accessible over internet
 - Unpatched
 - Hardcoded passwords
- Target data breach caused by stolen credentials from third party controls vendor

Simulation vs. Reality

VOLTTRON hardware demo

- Algorithm worked perfectly in simulation
- Initially failed when applied to real systems
- Potential stumbling blocks
 - Perfect knowledge
 - Time steps
 - Lack of diversity
 - Hidden factors

Interacting with Devices

Proprietary Protocols

- Vendors don't necessarily have incentive to be open
- Lack of standards or too many standards
 - Communicating with multiple devices could require speaking multiple protocols
- Device-specific characteristics
 - Time-scale
 - Responsiveness
 - Available information
 - Critical priority

Pacific Northwest NATIONAL LABORATORY

Testing and Verification

Back to simulation vs. reality problem

- Testing applications without access to appliances
- Testing at scale
- Test coverage, edge cases
- Who watches the watcher
 - Software and hardware responsibilities for safe operation

Human Factor

Utility Operators

- Conservative
- Risk Averse (for good reason)
- Vendors
 - Does it help them sell appliances?
- Consumers
 - Lower bill
 - No decrease in quality of service
- Other developers
 - Ease of use
 - Power

Pacific Northwest NATIONAL LABORATORY

Technology Solution Attributes

Open, flexible and modular software platform

- Ease of application development
- Interoperable across vendors and applications
- Hides power and control system complexities from developers
- Object oriented, modern software development environment
- Language agnostic. Does not tie the applications to a specific language such as Java
- Broad device and control systems protocols support built-in
 - ModBUS, BACNet, and others
 - Multiple types of controllers and sensors
 - Low CPU, memory and storage footprint requirements
 - Supports non-Intel CPUs
- Secure
 - Security libraries and cryptography built-in
 - Manage applications to prevent resource exhaustion (CPU, memory, storage)
 - Robust against denial-of-service (e.g. does not crash when scanned via NMAP)
 - Supports modern application development environments

Pacific

Managing Load on Distribution Transformer

- One distribution transformer serving residential neighborhood
- Multiple electric vehicles per household
- 107 degree day
- Goal: Keep the transformer temperatures below a desired threshold to extend lifetime and reduce risk of fault
- Use VOLTTRON to coordinate EV charging and other load behavior across residences to:
 - Keep aggregate power used by multiple residences below a limit related to transformer temperatures
 - Give priority to vehicles that need to leave soon (e.g. pick up kids from soccer)
 - Temporarily absorb start-up demand from A/C compressors and motors.

Approach: VOLTTRON™ Platform

VOLTTRON is a software platform for next generation distributed control applications for integrating buildings and power grid

- Proven through simulation, prototypes and field deployments
- Flexible, Modular and Language-agnostic
- Open-source, easy to extend, already being used by external collaborators
- Maintain security and manage platform resources
- Services for applications to find each other

VOLTTRON Success Stories

- Ideal platform for Department of Energy to use for transactive energy research and demonstrations
- Enables decentralized, distributed or hierarchical control applications with fast, and easy code development

Pacific Northwes

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

- Demonstrated with real hardware
 - Hardware testbed
 - EV Charging coordination at PNNL SmartHomes
 - Transactional Network Program
- Downloaded and used by:
 - Virginia Tech
 - LBNL
 - ORNL
- Funded by PNNL's Future Power Grid Initiative

Conclusion

- Business as usual is not an option
- We have solutions, but they must transition to real world applications
- Great opportunities but great challenges and responsibility

VOLTTRON Info

- Open Source
- Active development
- <u>https://github.com/VOLTTRON/volttron/wiki</u>
- volttron@pnnl.gov

