A Modeling Method to Develop Goal Oriented Adaptive Agents in Modeling and Simulation for Smart Grids

Hyo-Cheol Lee, Hee-Soo Kim and Seok-Won Lee
Knowledge-intensive Software Engineering (NiSE) Lab.
Ajou University, Republic of Korea

The 3rd International Workshop on Software Engineering for Smart Grid (SE4SG) in conjunction with the International Conference on Software Engineering (ICSE), Hyderabad, India, 1st June 2014
Outlines

• Introduction
• Related Work
• Application Domain
• GoABMS Framework
• GOA Model
• Case Study
• Conclusion and Discussion
• Smart Grid is one of **Critical Infrastructures** (CIs), which is highly connected with our life

• The failure of Smart Grid causes considerable risk

• Before applying new policies or requirements, we need to analyze and predict the influences

Introduction (2/3)

- Agent-based Modeling and Simulation (ABMS) is one of useful approach to analyze and predict a problem in Smart Grid.

- Due to the characteristics of Smart Grid, it is not an easy task to develop models that satisfy the Smart Grid requirements:
 - RQ1: Smart Grid change their behavior dynamically (Adaptability)
 - RQ2: Smart Grid evolve as introducing new components or modifying/removing current components (Evolvement)

- ABMS can help modeler to make Smart Grid models, but it is not enough to achieve two requirements of Smart Grid.

- To satisfy these requirements, we need to develop models to be adaptive and evolutionary.
• We propose a **Goal-oriented ABMS (GoABMS) framework**, which especially focus on the **agent design activity**

• **Concept of goal** help the behavior of an agent to be separated into **means and objective**

• **Goal-oriented Organizational Agents (GOA) model** provide modeler with **traceability** between agents’ requirements and their detail design

• As the result, our modeling method enables modelers to design Smart Grid models to be **adaptive** and **evolutionary**
Related Work

- **ABMS for Smart Grid**
 - Karnouskos and Holanda [2], Pipattanasomporn [3], Bou Ghosn et al. [4], Chalkiadakis et al. [5]
 - Do not clearly mention how to design and develop agents

- **Agent-oriented Software Engineering (AOSE)**
 - Gaia [6], Prometheus [7] and Tropos [8]
 - Do not deal with early requirements
 - Rigid architectures

- **Role-oriented Adaptive Design (ROAD) [9,10]**
 - Do not clearly describe the relationship between goal and task
Application Domain

• In order to verify our modeling approach, we adopt a Smart Grid design in Chalkiadakis et al. [11]

• The original design is verifying profit sharing mechanism for Virtual Power Plant (VPP) and Distributed Energy Resources (DERs)

• In our research, we have three assumptions
 – There are two profit sharing policies: with or without estimated generation
 – Smart Grid has a VPP comprised of several DERs
 – For each DER, the target electricity to be generated is predefined
GoABMS Framework (1/6)

- In GoABMS framework, we especially concentrate on the design of agents and organizations derived from the goal-oriented requirements

Figure 1. Conceptual model of a smart grid
GoABMS Framework (2/6)

- GoABMS framework has **7 phases** to concretize and design agent model from simulation needs

![Diagram of GoABMS Framework]

Figure 2. A goal-oriented ABMS framework for smart grids
• **Analyzing Requirements**
 – Simulation components and simulation environment are identified
 – Requirements are specified with two types of model: **strategic dependency (SD) model** and **strategic rationale (SR) model**
 – These models describe the dependency between actors and organizations, and the rationale of the actors

• **Designing Agents**
 – Agents are designed in detail from SD and SR models
 – The elements of models are concretized into an agent, goal, action, and context model
 – An agent design includes plans specifying a series of actions to expressing a way for the agents to achieve its goals
GoABMS Framework (4/6)

• Designing Organizations
 – Organizations are designed in detail like agents, but difference between agents and organization is actions and roles
 – Instead of actions, an organization has roles played by other agents or organization at runtime
 – A role is specified with a set of goals, context model and two conditions
 – For an organization to achieve its goal, plans of the goal are pursued by a goal of roles instead of actions in agent
Choosing/Developing Agents & Organization
- Modeler can choose agents in consideration of the reusability of preexisting agents
- If a reusable agent does not exist, modelers should develop agents

Generating Scenarios
- Generating scenarios through setting the initial values and events for simulation environment and agents

Simulating Scenarios
- A scenarios and agents are combined with a simulation engine and simulation is executed
- Simulation results are offered to users
GoABMS Framework (6/6)

<table>
<thead>
<tr>
<th>Phases</th>
<th>Artifacts</th>
<th>Elements</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing Requirements</td>
<td>Simulation Environment Requirement Specification</td>
<td>Electric equipment</td>
<td>Type, amount of the required electricity, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weather information</td>
<td>The changes of weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temporal information</td>
<td>The start and end time of simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spatial information</td>
<td>The range of the simulated world</td>
</tr>
<tr>
<td></td>
<td>Strategic Dependency Model</td>
<td>Dependency type</td>
<td>The relation type between two actors (goal dependency, task dependency, resource dependency, and softgoal dependency)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actors</td>
<td>Actors are abstract simulation objects described in the requirements in order to achieve the goal.</td>
</tr>
<tr>
<td></td>
<td>Strategic Rationale Model</td>
<td>Actors’ Rationale</td>
<td>The simplified structure to represent the rationale behind the dependency (means-end link, task-decomposition link)</td>
</tr>
<tr>
<td>Designing Agents</td>
<td>Agent Design(s)</td>
<td>Goals</td>
<td>Objectives that this agent wants to achieve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actions</td>
<td>Tasks that this agent can do in order to achieve the goals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Context model</td>
<td>Information model for facts that this agent believes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plans</td>
<td>Means for this agent to achieve a goal</td>
</tr>
<tr>
<td>Designing Organizations</td>
<td>Organization Design(s)</td>
<td>Goals</td>
<td>Objectives that this organization wants to achieve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roles</td>
<td>Goals that the role can achieve, context model to specify the belief of the role, and prerequisite and exceptional conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Context model</td>
<td>Information model for facts that this organization believes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plans</td>
<td>Means for this organization to achieve a goal</td>
</tr>
<tr>
<td>Choosing Agents</td>
<td>Refers to Developing Agents.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing Agents</td>
<td>Agents (or Organizations)</td>
<td>Agent Implementation</td>
<td>Agent implementation that can bind with a simulation framework</td>
</tr>
<tr>
<td>Generating Scenarios</td>
<td>Simulation Scenarios</td>
<td>Environment Setting</td>
<td>The simulation environment information (weather, temporal, and spatial information)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agents Settings</td>
<td>Initial value for attribute of the agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial Event List</td>
<td>Planned initial event list for simulation</td>
</tr>
<tr>
<td>Simulating Scenarios</td>
<td>Simulation Results</td>
<td>Unconstrained</td>
<td>Not limited because this can be changed by simulation goal</td>
</tr>
</tbody>
</table>

- Artifacts of previous phase is used in next phase
- Each artifact consist of several elements
- SD and SR model, agent and organization model is most important artifacts in framework

Table 1. Activities and artifacts of GoABMS framework
GOA Model (1/3)

• **GOA model is used as a meta-model** able to design and specify adaptive and evolutionary agent and organization models

• **Meta-Model for Agent Requirements**
 – Through GRL of i* framework, actors, intentional elements and intentional relationship is specified

• **Meta-Model for Agent Structure**
 – Specifying how agents or organizations are composed of components

• **Meta-Model for Agent Behavior**
 – Focusing on that every agent can be independently developed with a minimal dependency by other agent
GOA Model (2/3)

- Meta-Model for Agent Structure
 - Common Perspective
 - Modeling Element
 - Plannable
 - ContextModel
 - Agent Perspective
 - Agent
 - Goal
 - Action
 - Organization Perspective
 - Organization
 - Goal
 - Role

Figure 3. Agent-structural meta-model of GOA model
GOA Model (3/3)

- Meta-Model for Agent Behavior
 - Common Perspective
 - Node
 - Link
 - StartPoint and EndPoint
 - Fork and Join
 - Decision
 - Activity
 - Plannable
 - Agent Perspective
 - Goal
 - Plan
 - Action
 - Organization Perspective
 - Goal
 - Plan
 - Role

Figure 4. Agent-behavioral meta-model of GOA model
Case Study (1/4)

- Verify **feasibility** of proposed framework and model
- Focus on **designing agent and organization model** from simulation requirements

Requirement
- Smart Grid
- VPP (Virtual Power Plant)
- DER (Distributed Energy Resource)

Design
- Organization design (VPP)
- Agent design (DER)

Contribution
- Adaptive perspective
- Evolutionary perspective
Case Study (2/4)

- Smart Grid level
 - Intelligent Core, VPP and Consumer
 - SD model to show the relationship between actors

- VPP level
 - VPP manager and DER
 - Following a policy to use information of estimation and generation of electricity

- DER level
 - Wind Turbine
 - It must have the DER’s goals as a subset of its won goals

Figure 5. Partial artifacts of analyzing requirements
Case Study (3/4)

Organization design
- Represents VPP
- Includes goals, roles, context model, plan for each goal and role

Agents design
- Represents Wind Turbine
- Includes goal, action, context model and plan for each goal

![Diagram](image)

Figure 6. Partial artifacts of designing organization & agent
Case Study (4/4)

- Proposed method has **two perspectives of contribution**: Adaptive and Evolutionary perspective

- **From the adaptive perspective**
 - Structural adaptability
 - Behavioral adaptability

- **From the evolutionary perspective**
 - Introducing new agent
 - Modifying or removing existing agent
Conclusion and Discussion

• We propose a **GoABMS framework** to model and simulate Smart Grid and **GOA model** to design agents and organizations
 – Through GoABMS framework, modeler can design agents for Smart Grid
 – GOA model makes a Smart Grid model more adaptive and evolutionary
 – Case study of profit sharing policies shows the feasibility of proposed method

• As future work, we have a plan to perform further research from various viewpoint
 – Implement simulation system
 – Combine with other techniques
 – Verify through theoretical approach and experiments
References

Thank you

Q & A